
Córdova-Figueroa and Brady Reply: We reply to the
preceding Comment [1]. In our original Letter [2] we
model the motor and the reactive bath particles as (macro-
scopic) colloidal particles dispersed in a continuum sol-
vent. The dynamics are governed by the Smoluchowski
equation for the probability density of the N-particle con-
figuration: @PN=@tþ

P
N
i¼1 ri � ji ¼ 0; where the flux of

spherical particle i is ji ¼ �P
N
j¼1 DijPN � rj ðlnPN þ

VN=kTÞ, and VN is the interaction potential. The
Brownian force acting on particle i due to the random
thermal fluctuations of the solvent is �kTri lnPN . The
diffusivity of an ij pair is Dij ¼ kTMij, where Mij is the
hydrodynamic mobility tensor—the velocity of particle i
due to a force on j. At equilibrium the Boltzmann distri-
bution holds: Peq

N � e�VN=kT , and ji ¼ �P
N
j¼1 DijPN �

rj lnðPN=P
eq
N Þ; departures from equilibrium drive a flux.

Designate particle ‘‘1’’ to be the ‘‘motor’’ and the other
N � 1 particles to be ‘‘reactive’’ bath particles. We neglect
hydrodynamic interactions implying that the mobility is
that of an isolated particle Dij ¼ ðkT=6��aiÞI�ij. Inte-
grating the N-particle Smoluchowski equation over the
positions of the N � 1 bath particles produces the evolu-
tion equation for the motor: @P1=@tþr1 � hj1i¼0, where
P1ðx1; tÞ is the probability density for finding the motor,
and the average flux of the motor is given by hj1i � �D11 �
r1P1 þ P

N
j¼2D11 � R

PNrj lnðPN=P
eq
N Þdr2; . . . ; drN ¼

ð�D11 � r1 lnP1 þ D11 �
R
P1=1r2 lnðP1=1=P

eq
1=1Þdr2ÞP1,

with r2 ¼ x2 � x1, and we have introduced the conditional
probability density for finding a bath particle relative to
particle 1, P1=1ðr2jx1; tÞ, more commonly known as the
pair-distribution function. For hard-sphere interactions,
VN ¼ 0 and P

eq
1=1 ¼ const, the integrand in the flux be-

comes r2P1=1 and integration by parts gives for the aver-
age flux of particle 1: hj1i ¼ ð�D11 � r1 lnP1þ
D11 � HnP1=1dS12ÞP1, where n is the normal pointing
out of particle 1 and S12 is the surface of contact between
particles 1 and 2.

The average flux of particle 1 can be primitively written
as the average particle velocity, hv1i, times the probability
density P1, viz. hj1i ¼ hv1iP1, and is composed of two
terms: The first term is the normal unhindered random
walk of the particle owing to Brownian motion: ð�D11 �
r1 lnP1ÞP1 ¼ �D11 � r1P1, where D11 ¼ kT=6��a1I is
the Stokes-Einstein-Sutherland diffusivity of an isolated
particle. The Brownian flux can be interpreted as a
Brownian velocity, vB

1 � �D11 � r1 lnP1, times the proba-
bility density, which permits the further interpretation of a
balance of forces between the hydrodynamic Stokes drag
Fhyd ¼ �6��a1v

B
1 and the Brownian force FB ¼

�kTr1 lnP1, viz. F
hyd þ FB ¼ 0. There is no violation

of momentum conservation; there are only ‘‘internal’’
forces acting—the thermal fluctuations of the solvent being
dissipated via Stokes drag.

The second term is the influence of the bath par-
ticles on particle 1. The probability density for finding

a bath particle relative to the motor for dilute bath par-
ticle concentrations is simply the number density of
bath particles P1=1 ¼ n. Thus, D11 � HnP1=1dS12 ¼
ð1=6��a1ÞHn nkT dS12—the integral of the ‘‘osmotic’’
pressure � � nkT over the surface of contact. In analogy
to the balance of forces for the unhindered Brownian
motion, the second contribution to the flux is a balance
of hydrodynamic and osmotic forces, viz. Fhyd þ Fosm ¼
0. Only internal forces act—just Brownian motion.
To complete the analysis one returns to the N-particle

Smoluchowski equation to derive an equation for P1=1,
which, in general, depends on P2=1ðr2; r3jx1Þ, etc., as
well as P1; the hierarchy was closed by diluteness. The
specific equation for P1=1 or n depends on the problem
considered. E.g., the hindering influence of the bath parti-
cles on the long-time self-diffusion of the motor. Or an
initial condition with all particles located in one-half of a
container—as the bath particles diffuse down their concen-
tration gradient they entrain the motor giving the diffusive
flux of one species driven by a concentration gradient of
another. [At the Smoluchowski level there is no way to
distinguish D2O from H2O (they are both solvent and/or
have the same diffusivity) and thus there is no inconsis-
tency.] Or, the bath particles could react at the surface of
the motor and thereby create a variation in the local
pair probability and a resulting flux of the motor, which
is our model for osmotic propulsion.
We opted to omit this detailed statistical mechanical

analysis and make a more intuitive connection to ‘‘os-
motic’’ forces so that the reader would not be distracted
and could focus attention on the conclusions of the work.
Those interested in the details, we thought, would go to the
cited references for a full treatment. One can criticize the
model as perhaps not applying to the motivating experi-
ments on catalytic nanomotors or for the neglect of hydro-
dynamic interactions. And the choice of the word osmotic
seems to have caused confusion. But there is no violation
of basic physical principles.
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